Set Theoretic Defining Equations of the Variety of Principal Minors of Symmetric Matrices

نویسنده

  • LUKE OEDING
چکیده

The variety of principal minors of n× n symmetric matrices, denoted Zn, is invariant under the action of a group G ⊂ GL(2) isomorphic to (SL(2)) ×Sn. We describe an irreducible G-module of degree 4 polynomials that cuts out Zn set theoretically. This solves the set-theoretic version of a conjecture of Holtz and Sturmfels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positivity of principal minors, sign symmetry and stability

The relation between positivity of principal minors, sign symmetry and stability of matrices is studied. It is shown that for sign symmetric matrices, having positive principal minors is equivalent to stability, to D-stability, and to having a positive scaling into a stable matrix. The relation between spectra of matrices some of whose powers have positive principal minors and matrices whose co...

متن کامل

A look-ahead Schur Algorithm

The classical Schur algorithm computes the LDL T factorization of a symmetric Toeplitz matrix in O(n 2) operations, but requires that all the principal minors of the matrix be nonsingular. Look-ahead schemes have been proposed to deal with matrices that have exactly singular principal minors 9], 11]. Unfortunately, these algorithms cannot be extended to matrices that have ill-conditioned princi...

متن کامل

The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2

Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...

متن کامل

Matrices Diagonally Similar to a Symmetric Matrix

Let IF be field, and let A and B be n X n matrices with elements in IF. Suppose that A is completely reducible and that B is symmetric. If the principal minors of A determined by the 1and 2-circuits of the graph of B and by the chordless circuits of the graph of A are equal to the corresponding principal minors of B, then A is diagonally similar to B; and conversely.

متن کامل

Hyperdeterminantal relations among symmetric principal minors

The principal minors of a symmetric n×n-matrix form a vector of length 2n. We characterize these vectors in terms of algebraic equations derived from the 2×2×2-hyperdeterminant.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008